Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Commun ; 15(1): 1970, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443335

RESUMO

Natural herbs, which contain pharmacologically active compounds, have been used historically as medicines. Conventionally, the analysis of chemical components in herbal medicines requires time-consuming sample separation and state-of-the-art analytical instruments. Nanopore, a versatile single molecule sensor, might be suitable to identify bioactive compounds in natural herbs. Here, a phenylboronic acid appended Mycobacterium smegmatis porin A (MspA) nanopore is used as a sensor for herbal medicines. A variety of bioactive compounds based on salvianolic acids, including caffeic acid, protocatechuic acid, protocatechualdehyde, salvianic acid A, rosmarinic acid, lithospermic acid, salvianolic acid A and salvianolic acid B are identified. Using a custom machine learning algorithm, analyte identification is performed with an accuracy of 99.0%. This sensing principle is further used with natural herbs such as Salvia miltiorrhiza, Rosemary and Prunella vulgaris. No complex sample separation or purification is required and the sensing device is highly portable.


Assuntos
Alcenos , Nanoporos , Plantas Medicinais , Polifenóis , Algoritmos , Extratos Vegetais
2.
Nat Commun ; 15(1): 1969, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443434

RESUMO

Natural fruits contain a large variety of cis-diols. However, due to the lack of a high-resolution sensor that can simultaneously identify all cis-diols without a need of complex sample pretreatment, direct and rapid analysis of fruits in a hand-held device has never been previously reported. Nanopore, a versatile single molecule sensor, can be specially engineered to perform this task. A hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore modified with a sole phenylboronic acid (PBA) adapter is prepared. This engineered MspA accurately recognizes 1,2-diphenols, alditols, α-hydroxy acids and saccharides in prune, grape, lemon, different varieties of kiwifruits and commercial juice products. Assisted with a custom machine learning program, an accuracy of 99.3% is reported and the sample pretreatment is significantly simplified. Enantiomers such as DL-malic acids can also be directly identified, enabling sensing of synthetic food additives. Though demonstrated with fruits, these results suggest wide applications of nanopore in food and drug administration uses.


Assuntos
Citrus , Nanoporos , Estados Unidos , Frutas , Álcoois Açúcares , Ácidos Carboxílicos , Mycobacterium smegmatis , Porinas
3.
ACS Sens ; 9(3): 1359-1371, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38449100

RESUMO

N-Acetyl modification, a chemical modification commonly found on biomacromolecules, plays a crucial role in the regulation of cell activities and is related to a variety of diseases. However, due to the instability of N-acetyl modification, accurate and rapid identification of N-acetyl modification with a low measurement cost is still technically challenging. Here, based on hydroxylamine deacetylation and nanopore single molecule chemistry, a universal sensing strategy for N-acetyl modification has been developed. Acetohydroxamic acid (AHA), which is produced by the hydroxylamine deacetylation reaction and serves as a reporter for N-acetylation identification, is specifically sensed by a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA). With this strategy, N-acetyl modifications on RNA, DNA, proteins, and glycans were identified, demonstrating its generality. Specifically, histones can be treated with hydroxylamine deacetylation, from which the generated AHA can represent the amount of N-acetyl modification detected by a nanopore sensor. The unique event features of AHA also demonstrate the robustness of sensing against other interfering analytes in the environment.


Assuntos
Nanoporos , Hidroxilamina/metabolismo , Acetilação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Hidroxilaminas
4.
Am J Pathol ; 194(2): 280-295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981220

RESUMO

In this study, knockout of FOXO3 was found to impair intervertebral disc maturation and homeostasis in postnatal mice as well as facilitating extracellular matrix degradation. RNA sequencing can uncover disease-related gene expression and investigate disease pathophysiology. High-throughput transcriptome sequencing and experimental validations were used to identify the essential gene and mechanism involved in intervertebral disc degeneration (IDD). Nucleus pulposus (NP) tissue samples were collected from the mice with conditional knockout of FOXO3 (FOXO3 KO) for high-throughput sequencing, followed by screening of differentially expressed lncRNAs and mRNAs. The mRNAs were subjected to GO and KEGG enrichment analyses. Interactions among FOXO3, HOTTIP, miR-615-3p, and COL2A1 were analyzed. NP cells were subjected to a series of mimics, inhibitors, overexpression plasmids, and shRNAs to validate the mechanisms of FOXO3 in controlling HOTTIP/miR-615-3p/COL2A1 in IDD. Mechanistically, FOXO3 transcriptionally activated HOTTIP, facilitated the competitive HOTTIP binding to miR-615-3p, and increased the expression of the miR-615-3p target gene COL2A1. Thus, NP cell proliferation was induced, cell apoptosis was diminished, resulting in delayed development of IDD. Based on these data, the transcription factor FOXO3 may decrease miR-615-3p binding to COL2A1 and up-regulate COL2A1 expression by activating HOTTIP transcription, which in turn inhibits NP cell apoptosis and promotes its proliferation, to prevent the degradation of intervertebral disc matrix and maintain the normal physiological function of intervertebral disc, thereby preventing the occurrence and development of IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Núcleo Pulposo/metabolismo , RNA Mensageiro/metabolismo , Apoptose/genética
5.
Nat Methods ; 21(1): 92-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749214

RESUMO

Natural proteins are composed of 20 proteinogenic amino acids and their post-translational modifications (PTMs). However, due to the lack of a suitable nanopore sensor that can simultaneously discriminate between all 20 amino acids and their PTMs, direct sequencing of protein with nanopores has not yet been realized. Here, we present an engineered hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni2+ modification. It enables full discrimination of all 20 proteinogenic amino acids and 4 representative modified amino acids, Nω,N'ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(ß-N-acetyl-D-glucosaminyl)-asparagine (GlcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning, an accuracy of 98.6% was achieved. Amino acid supplement tablets and peptidase-digested amino acids from peptides were also analyzed using this strategy. This capacity for simultaneous discrimination of all 20 proteinogenic amino acids and their PTMs suggests the potential to achieve protein sequencing using this nanopore-based strategy.


Assuntos
Nanoporos , Aminoácidos/química , Proteínas/metabolismo , Porinas/química , Porinas/metabolismo , Peptídeos/química
6.
Angew Chem Int Ed Engl ; 63(8): e202316766, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38116834

RESUMO

Disaccharides are composed of two monosaccharide subunits joined by a glycosidic linkage in an α or ß configuration. Different combinations of isomeric monosaccharide subunits and different glycosidic linkages result in different isomeric disaccharide products. Thus, direct discrimination of these disaccharide isomers from a mixture is extremely difficult. In this paper, a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore conjugated with a phenylboronic acid (PBA) adapter was applied for disaccharide sensing, with which three most widely known disaccharides in nature, including sucrose, lactose and maltose, were clearly discriminated. Besides, all six isomeric α-D-glucopyranosyl-D-fructoses, differing only in their glycosidic linkages, were also well resolved. Assisted by a custom machine learning algorithm, a 0.99 discrimination accuracy is achieved. Nanopore discrimination of disaccharide isomers with different glycosidic linkages, which has never been previously demonstrated, is inspiring for nanopore saccharide sequencing. This sensing capacity was also applied in direct identification of isomaltulose additives in a commercial sucrose-free yogurt, from which isomaltulose, lactose and L-lactic acid were simultaneously detected.


Assuntos
Dissacarídeos , Nanoporos , Glicosídeos , Mycobacterium smegmatis , Lactose , Porinas , Monossacarídeos
7.
Nano Lett ; 24(1): 305-311, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38149630

RESUMO

Thyroid hormones (THs) are a variety of iodine-containing hormones that demonstrate critical physiological impacts on cellular activities. The assessment of thyroid function and the diagnosis of thyroid disorders require accurate measurement of TH levels. However, largely due to their structural similarities, the simultaneous discrimination of different THs is challenging. Nanopores, single-molecule sensors with a high resolution, are suitable for this task. In this paper, a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a single nickel ion immobilized to the pore constriction has enabled simultaneous identification of five representative THs including l-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2) and 3,3'-diiodo-l-thyronine (3,3'-T2). To automate event classification and avoid human bias, a machine learning algorithm was also developed, reporting an accuracy of 99.0%. This sensing strategy is also applied in the analysis of TH in a real human serum environment, suggesting its potential use in a clinical diagnosis.


Assuntos
Nanoporos , Humanos , Níquel , Hormônios Tireóideos/análise , Hormônios Tireóideos/química , Tiroxina , Tironinas
8.
Top Curr Chem (Cham) ; 381(6): 33, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921912

RESUMO

Palladium-catalyzed allylation cyclization reaction has recently emerged as an efficient and powerful synthetic platform for the construction of diverse and valuable carbo- and heterocycles. Thus the development of new allylic motifs for achieving this type of transformations in high reactivity and selectivity is of great importance. Generally, these substrates have been utilized as 1,3-, 1,4-, 1,5-, 1,6-dipoles in many reactions, which are applied to prepare highly functionalized products with complete control of chemo-, regio-, diastereo-, and enantioselectivity. In this review, we focus our attention on the development of palladium-catalyzed [4 + n] cycloaddition of allylic motifs and describe a comprehensive and impressive advances in this area. Meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.


Assuntos
Lactonas , Paládio , Reação de Cicloadição , Catálise , Carbonatos
9.
Chem Sci ; 14(45): 13244-13253, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023525

RESUMO

Phase changes in colloidal semiconductor nanocrystals (NCs) are essential in material design and device applications. However, the transition pathways have yet to be sufficiently studied, and a better understanding of the underlying mechanisms is needed. In this work, a complete ligand-assisted phase transition from zinc blende (ZB) to wurtzite (WZ) is observed in CdSe nanoplatelets (NPLs). By monitoring with in situ absorption spectra along with electrospray ionization mass spectrometry (ESI-MS), we demonstrated that the transition process is a ligand-assisted covalent inorganic complex (CIC)-mediated phase transition pathway, which involves three steps, ligand exchange on ZB CdSe NPLs (Step 1), dissolution of NPLs to form CICs (Step 2), and conversion of CdSe-CIC assemblies to WZ CdSe NPLs (Step 3). In particular, CICs can be directly anisotropically grown to WZ CdSe NPL without other intermediates, following pseudo-first-order kinetics (kobs = 9.17 × 10-5 s-1). Furthermore, we demonstrated that CICs are also present and play an essential role in the phase transition of ZnS NPLs from WZ to ZB structure. This study proposes a new crystal transformation pathway and elucidates a general phase-transition mechanism, facilitating precise functional nanomaterial design.

10.
Chem Commun (Camb) ; 59(83): 12455-12458, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37781868

RESUMO

A hitherto unreported ketosulfonylmethylenation occurring at the C-3 position of imidazoheterocycles, with dimethylformamide as the methylene source was described. Using CoCl2·6H2O or Fe(acac)3 as efficient and inexpensive catalysts, some important biologically active methylenated compounds were prepared, with high efficacy, favorable functional group compatibilities, and a broad substrate scope.

11.
Nano Lett ; 23(20): 9437-9444, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818841

RESUMO

Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.


Assuntos
Nanoporos , Nucleosídeos , Reprodutibilidade dos Testes , Porinas/química , Mycobacterium smegmatis/química
12.
Nano Lett ; 23(18): 8620-8627, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37690030

RESUMO

Nucleotide sugars, the glycosyl donors in the biosynthesis of carbohydrates, are critical ingredients in the growth and development of all living organisms. A variety of nucleotide sugars simultaneously exist in biological samples. They, however, have only minor structural differences, which make them extremely difficult to discriminate. In this work, a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA) hetero-octamer was applied to sense nucleotide sugars. Five representative nucleotide sugars, including guanosine diphosphate mannose (GDP-Man), adenosine diphosphate glucose (ADP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), and uridine diphosphate glucoronic acid (UDP-GlcA), were successfully distinguished. A custom machine learning algorithm was also employed to automatically identify events, reporting a general accuracy of 99.4%. This sensing strategy provides a rapid, direct, and accurate method for identifying different nucleotide sugars. However, single-molecule identification of nucleotide sugars has never been previously reported, to the best of our knowledge.


Assuntos
Nanoporos , Açúcares de Uridina Difosfato , Humanos , Nucleotídeos , Açúcares , Uridina Difosfato N-Acetilglicosamina
13.
Angew Chem Int Ed Engl ; 62(21): e202216115, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929086

RESUMO

Site-specific functionalization of natural amino acid-containing biological nanopores is pivotal in single molecule sensing. However, pore engineering methodologies are restricted to a limited choice and introduction of unnatural chemical components is extremely difficult. Herein we report the genetic code expansion (GCE) strategy to introduce unnatural amino acid (UAA) to an octameric Mycobacterium smegmatis porin A (MspA) nanopore. GCE allows for rapid and efficient introduction of bioorthogonal reactive site (i.e., azide) to the pore rim, and conjugation of single stranded DNA or lysozyme was demonstrated. The lysozyme-conjugated pore was further used for the discrimination of different oligosaccharides, demonstrating a sensing capacity that a bare MspA nanopore does not possess. GCE with bioorthogonal handles, which has never been previously applied in the preparation of nanopores, is a versatile strategy for pore engineering and may further expand the application scenarios of nanopores.


Assuntos
Nanoporos , Muramidase/genética , Muramidase/metabolismo , DNA de Cadeia Simples , Código Genético , Porinas/metabolismo , Mycobacterium smegmatis/química
14.
ACS Nano ; 17(3): 2881-2892, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36655995

RESUMO

Isomers of some chemical compounds may be dynamically interconvertible. Due to a lack of sensing methods with a sufficient resolution, however, direct monitoring of such processes can be difficult. Engineered Mycobacterium smegmatis porin A (MspA) nanopores can be applied as nanoreactors so that chemical reactions can be directly monitored. Here, an MspA modified with a phenylboronic acid (PBA) adapter was prepared and was used to observe dynamic interconversion between chiral configurations of boronate esters, which appears as telegraphic switching on top of nanopore events. The mechanism of this behavior was further confirmed by trials with different halogenated catechols, dopamine, adenosine, 1,2-propanediol, and (2R,3R)-2,3-butanediol, and its generality has been demonstrated. These results suggest that an engineered MspA possesses an exceptional resolution in its monitoring of chemical reaction processes and may inspire the future design of nanopore small-molecule sensors.


Assuntos
Nanoporos , Nanotecnologia , Porinas/química
15.
ACS Nano ; 16(12): 21356-21365, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36475606

RESUMO

Ribonucleotides, which widely exist in all living organisms and are essential to both physiological and pathological processes, can naturally appear as ribonucleoside mono-, di-, and triphosphates. Natural ribonucleotides can also dynamically switch between different phosphorylated forms, posing a great challenge for sensing. A specially engineered nanopore sensor is promising for full discrimination of all canonical ribonucleoside mono-, di-, and triphosphates. However, such a demonstration has never been reported, due to the lack of a suitable nanopore sensor that has a sufficient resolution. In this work, we utilized a phenylboronic acid (PBA) modified Mycobacterium smegmatis porin A (MspA) hetero-octamer for ribonucleotide sensing. Twelve types of ribonucleotides, including mono-, di-, and triphosphates of cytidine (CMP, CDP, CTP), uridine (UMP, UDP, UTP), adenosine (AMP, ADP, ATP), and guanosine (GMP, GDP, GTP) were simultaneously discriminated. A machine-learning algorithm was also developed, which achieved a general accuracy of 99.9% for ribonucleotide sensing. This strategy was also further applied to identify ribonucleotide components in ATP tablets and injections. This sensing strategy provides a direct, accurate, easy, and rapid solution to characterize ribonucleotide components in different phosphorylated forms.


Assuntos
Nanoporos , Ribonucleosídeos , Ribonucleotídeos , Trifosfato de Adenosina
16.
Org Biomol Chem ; 21(1): 127-131, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484417

RESUMO

In this article, a convenient and efficient KIO3-promoted oxidative sulfenylation at the ß-position of tetrahydroisoquinolines and subsequent aromatization in the presence of elemental S8 is presented. The reaction proceeds with moderate to good yields via a double C-S formation process. A wide range of structurally diverse 4-sulfenylisoquinolines/3-sulfenylpiperidine were synthesized with excellent functional group tolerance and high efficiency.


Assuntos
Tetra-Hidroisoquinolinas , Estrutura Molecular , Tetra-Hidroisoquinolinas/química , Enxofre/química , Oxirredução , Estresse Oxidativo
17.
Nat Commun ; 13(1): 6911, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376324

RESUMO

Precise understanding of interfacial metal-hydrogen interactions, especially under in operando conditions, is crucial to advancing the application of metal catalysts in clean energy technologies. To this end, while Pd-based catalysts are widely utilized for electrochemical hydrogen production and hydrogenation, the interaction of Pd with hydrogen during active electrochemical processes is complex, distinct from most other metals, and yet to be clarified. In this report, the hydrogen surface adsorption and sub-surface absorption (phase transition) features of Pd and its alloy nanocatalysts are identified and quantified under operando electrocatalytic conditions via on-chip electrical transport measurements, and the competitive relationship between electrochemical carbon dioxide reduction (CO2RR) and hydrogen sorption kinetics is investigated. Systematic dynamic and steady-state evaluations reveal the key impacts of local electrolyte environment (such as proton donors with different pKa) on the hydrogen sorption kinetics during CO2RR, which offer additional insights into the electrochemical interfaces and optimization of the catalytic systems.

18.
Comput Intell Neurosci ; 2022: 4272520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177313

RESUMO

Objective: To probe into the efficacy of Yishen Huashi granules combined with linagliptin tablets in the treatment of type 2 diabetic nephropathy (DN) and its effect on blood glucose and renal function in patients. Methods: 70 patients with type 2 DN at our hospital between May 2020 and May 2022 were chosen as the research objects and separated into the control group and the research group based on their treatments. With 35 cases in each group, the patients treated with initial therapy and linagliptin tablets were enrolled in the control group, and those who received the above treatments and also Yishen Huashi granules were included in the research group. Their clinical indexes such as blood glucose and renal function were compared with both groups after treatment. Results: After treatment, the research group had remarkably lower fasting blood glucose (FPG), 2 h-postprandial blood glucose (2 h-PBG), and glycosylated hemoglobin A1c (HbA1c) levels than those in the control group (P < 0.05). After treatment, the research group had remarkably lower levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) (P < 0.05) and higher high-density lipoprotein (HDL) levels (P < 0.05) than those in the control group. After treatment, the urinary microalbumin (u-mALB) level was remarkably lower in both groups (P < 0.05) and was distinctly lower in the research group than in the control group (P < 0.05). After treatment, the research group had remarkably lower renal function indexes such as serum creatinine (SCr), blood urea nitrogen (BUN), urinary protein (UPro), and urinary albumin excretion rate (UAER) (P < 0.05) and a higher estimated glomerular filtration rate (eGFR) level (P < 0.05) than those in the control group. The efficacy was evaluated by the traditional Chinese medicine (TCM) syndrome score after treatment. There were no patients in complete remission between both the groups, where slight differences were found in the proportion of significant remission (P > 0.05), with the total effective rate of the research group remarkably higher than that of the control group (P < 0.05). Conclusion: The combination of Yishen Huashi granules and linagliptin tablets can reduce the blood glucose and blood lipid levels in patients with type 2 DN and lower UPro and protect renal function at the same time, which provides a new idea and a method for clinical treatment of type 2 DN with integrated traditional Chinese and Western medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Albuminas/uso terapêutico , Glicemia , Colesterol/uso terapêutico , Creatinina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/uso terapêutico , Humanos , Rim/química , Rim/fisiologia , Linagliptina/uso terapêutico , Lipoproteínas HDL/uso terapêutico , Lipoproteínas LDL/uso terapêutico , Comprimidos/uso terapêutico , Triglicerídeos/uso terapêutico
19.
J Am Chem Soc ; 144(30): 13717-13728, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867993

RESUMO

Alditols, which have a sweet taste but produce much lower calories than natural sugars, are widely used as artificial sweeteners. Alditols are the reduced forms of monosaccharide aldoses, and different alditols are diastereomers or epimers of each other and direct and rapid identification by conventional methods is difficult. Nanopores, which are emerging single-molecule sensors with exceptional resolution when engineered appropriately, are useful for the recognition of diastereomers and epimers. In this work, direct distinguishing of alditols corresponding to all 15 monosaccharide aldoses was achieved by a boronic acid-appended hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore (MspA-PBA). Thirteen alditols including glycerol, erythritol, threitol, adonitol, arabitol, xylitol, mannitol, sorbitol, allitol, dulcitol, iditol, talitol, and gulitol (l-sorbitol) could be fully distinguished, and their sensing features constitute a complete nanopore alditol database. To automate event classification, a custom machine-learning algorithm was developed and delivered a 99.9% validation accuracy. This strategy was also used to identify alditol components in commercially available "zero-sugar" drinks and healthcare products, suggesting their use in rapid and sensitive quality control for the food and medical industry.


Assuntos
Nanoporos , Atenção à Saúde , Monossacarídeos , Mycobacterium smegmatis , Porinas , Sorbitol , Álcoois Açúcares
20.
Aging Cell ; 21(8): e13677, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35907249

RESUMO

The transcription factor p300 is reportedly involved in age-associated human diseases, including intervertebral disc degeneration (IDD). In this study, we investigate the potential role and pathophysiological mechanism of p300 in IDD. Clinical tissue samples were collected from patients with lumbar disc herniation (LDH), in which the expression of p300, forkhead box O3 (FOXO3), and sirtuin 1 (Sirt1) was determined. Nucleus pulposus cells (NPCs) isolated from clinical degenerative intervertebral disc (IVD) tissues were introduced with oe-p300, oe-FOXO3, Wnt/ß-catenin agonist 1, C646 (p300/CBP inhibitor), or si-p300 to explore the functional role of p300 in IDD and to characterize the relationship between p300 and the FOXO3/Sirt1/Wnt/ß-catenin pathway. Also, we established a rat IDD model by inducing needle puncture injuries in the caudal IVDs for further verification of p300 functional role. We found that p300 was downregulated in the clinical tissues and NPCs of IDD. Overexpression of p300 promoted the proliferation and autophagy of NPCs while inhibiting cell apoptosis, which was associated with FOXO3 upregulation. p300 could increase the expression of FOXO3 by binding to the Sirt1 promoter, and thus, contributed to inactivation of the Wnt/ß-catenin pathway. In vivo results further displayed that p300 slowed down the progression of IDD by disrupting the Wnt/ß-catenin pathway through the FOXO3/Sirt1 axis. Taken together, we suggest that p300 can act to suppress IDD via a FOXO3-dependent mechanism, highlighting a potential novel target for treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Apoptose , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...